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Abstract. In this paper, we describe a method for recognizing sound
sources in a mixture. While many audio-based content analysis meth-
ods focus on detecting or classifying target sounds in a discriminative
manner, we approach this as a regression problem, in which we estimate
the relative proportions of sound sources in the given mixture. Using
certain source separation ideas, we directly estimate these proportions
from the mixture without actually separating the sources. We also intro-
duce a method for learning a transition matrix to temporally constrain
the problem. We demonstrate the proposed method on a mixture of five
classes of sounds and show that it is quite effective in correctly estimating
the relative proportions of the sounds in the mixture.

1 Introduction

Nowadays, a huge volume of multimedia content is available and is rapidly in-
creasing over broadband networks. While the content is usually managed or
searched using manually annotated text or collaborative information from users,
there has been increasing efforts to automatically analyze the content and find
relevant information. In particular, some researchers have tried to analyze the
content by recognizing sounds in the video because information in the audio
domain is crucial for certain tasks, such as sports highlight detection and event
detection in surveillance systems [1]. Moreover, audio data has a relatively low
bandwidth.

The majority of audio-based content analysis methods focus on detecting
a target source or classifying sound classes in a discriminative manner [2,3].
Although they are successful in some detection or classification tasks, such dis-
criminative approaches have a limitation in that most real-world sounds are
mixtures of multiple sources. It is therefore useful to be able to simultaneously
model multiple sources for various applications such as searching for certain
scenes in a film soundtrack. For example, if we want to search for a scene with
a specific actor in which a car is passing by and background music is present, it
would be useful to model each of these sources.

In this paper, we propose a generative approach, which models a mixture
sound as multiple single sources and estimates the relative proportion of each

* This work was performed while interning at Adobe Systems Inc.
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source. Our method is based on probabilistic latent component analysis (PLCA)
[4], which is a variant of non-negative matrix factorization (NMF). PLCA has
been widely used as a way of modeling sounds in the spectral domain because
of the interpretable decomposition and extensible capability as a probabilistic
model. We first formalize our problem using a PLCA-based approach and then
we propose an improved model which takes temporal characteristics of each
source into account. Lastly, we evaluate our method with a dataset and discuss
the results.

2 Proposed Method

The basic methodology that we follow is that of supervised source separation
using PLCA [5]. For each source, we estimate a dictionary of basis elements from
isolated training data of that source. Then, given a mixture, we estimate a set
of mixture weights. Using these weights, it is possible to separate the sources
(typical PLCA-based supervised source separation). However, without actually
separating the sources, we estimate the relative proportion of each source in the
mixture. Since we bypass the actual separation process, we can do certain things
to improve sound recognition performance even when it does not improve source
separation performance. Specifically, we choose the dictionary sizes based on
sound recognition performance. Also, we impose a temporal continuity constraint
that helps this performance but could introduce fairly heavy artifacts if we were
to actually separate the sources. Note that we refer to a source as a general class
of sounds, such as speech, music and other environmental sounds.

2.1 Basic Model

PLCA is an additive latent variable model that is used to decompose audio
spectrograms [4]. An asymmetric version of PLCA models each time frame of a
spectrogram as a linear combination of dictionary elements as follows:

X(f,t)~7>_ P(flz)Pi(z) (1)

where X (f,t) is the audio spectrogram, z is a latent variable, each P(f|z) is a
dictionary element, P;(z) is a distribution of weights at time frame ¢, and = is
a constant scaling factor. All distributions are discrete. Given X (f,t), we can
estimate the parameters of P(f|z) and P;(z) using the EM algorithm.

We model single sound sources and their mixtures using PLCA. We first com-
pute the spectrogram X (f,t) given isolated training data of source s. We then
use Eq. 1 to estimate a set of dictionary elements and weights that correspond to
that source. In the basic model, we assume that a single source is characterized
by the dictionary elements. Therefore, we retain the dictionary elements while
discarding the weights. Using the dictionary elements from each single source,
we build a larger dictionary to represent a mixture spectrogram. This is formed
by simply concatenating the dictionaries of the individual sources. Thus, if we
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have a spectrogram X/(f,¢) that is a mixture of two sources, we model it as
follows*:

Xu(f)~y 3. P(fI)P) (2)

Ze{zsl yZso }

where zs, and zg, represent the dictionary elements that belong to source 1 and
source 2 respectively. Since the dictionary elements of both sources are already
known, we keep them fixed and simply estimate the weights P;(z) at each time
frame using the EM algorithm. The weights tell us the relative proportion of
each dictionary element in the mixture. It is therefore intuitive that the sum of
the weights that correspond to a given source, will give us the proportion of that
source present in the mixture. Accordingly, we compute the relative proportions
of the sources at each time frame by simply summing the corresponding weights
as follows:

ri(s1) = Y Pi(2) (3)
ri(s2) = Y Pi(2) (4)

2.2 Modeling Temporal Dependencies

When we learn a model for a single source from isolated training data of that
source, we obtain a dictionary of basis elements and a set of weights. In the
previous subsection, we discarded the weights as they simply tell us how to
fit the dictionary to that specific instance of training data. This is usually the
practice when performing NMF or PLCA based supervised source separation [5].

Although the weights are specific to the training data, they do contain cer-
tain information that is more generally applicable. One such piece of information
is temporal dependencies amongst dictionary elements. For example, if a dictio-
nary element is quite active in one time frame, it is usually likely to be quite
active in the following time frame as well. However, there are usually more such
dependencies present such as things like a high presence of dictionary element
m in time frame ¢ usually followed by a high presence of dictionary element n
in time frame ¢ + 1. Using the weights of adjacent time frames, we can infer
this information. For time frames ¢t and ¢ + 1 of source s, we can compute this
dependency as follows:

¢S(Zt,2t+1) = P(Zt)P(Zt+1), \V/Z € Zg.

This gives us the affinity of every dictionary element to every other dictionary
element in two adjacent time frames. If we average this value over all time frames

4 Tt is straightforward to extend this to more sources.
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and normalize, we obtain a set of conditional probability distributions that serve
as a transition matrix as follows:

ZtT:_ll Gs(2t, 2t 41)
T—1 .
Doy 2ote1 Ps(z, 2e41)

When we learn dictionaries from isolated training data, we compute such a
transition matrix for each source. As a result, our model for each source consists
of a dictionary and a transition matrix.

Given a mixture, our method of estimating weights should be accordingly
changed to make use of the transition matrix. First, we should have a joint
transition matrix P(z;41|z) that corresponds to the concatenated dictionaries.
Since we assume that the activity of the dictionary elements in one dictionary
are independent of those in other dictionaries, we construct the joint transition
matrix by diagonalizing individual transition matrices. For example, if we have
two sound sources and two corresponding transition matrices 7T'1 and T2, the
joint transition matrix is formed as T' = [T 0;0 T5](using Matlab notation).

Once we obtain the concatenated dictionary and transition matrix, we move
on to the actual sound recognition stage. Given the mixture, we first estimate
the weights P;(z) as described in the previous subsection. We call this our initial

Ps(2t+1|2t) =

weights estimate Pt(l)(z). Using these estimates, we obtain a new estimate of the
weights that is more consistent with the dependencies that are implied by the
joint transition matrix®. We do this by first computing re-weighting terms in the
forward and backward directions to impose the joint transition matrix in both
directions:

Frai(z) = Y Plag|z2) PV (2).

Bi(2) = > P(zuy1|2) PEL (2).

Zt41

Using the above terms, we perform the re-weighting and normalize as follows to
get our final estimate of the weights:

_ PYR)(C+ F(2) + Bi(2))
Pz = =5 ’
3. P7(2) (C+ Fi(2) + Bi(2))

where C' is a parameter that controls the influence of the joint transition matrix.
As C tends to infinity, the effect of the forward and backward re-weighting terms
becomes negligible, whereas as C tends to 0 we tend to modulate the estimated
Pt(z) (z) by the predictions of these two terms, thereby imposing the expected
structure. This re-weighting is performed after the M step in every EM iteration.
Finally, we obtain the relative proportions of single sources at each time frame
by simply summing the corresponding weights as in Eq. 3 and 4.

5 This is analogous to smoothing an estimated time series with a moving average filter
if we believe that the time series is slowly varying.
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Fig. 1: A toy example: training sources are given as chirps that have frequencies chang-
ing in opposite directions and the test mixture is created by linearly cross-fading the
two chirps. The basic model fails to discriminate the two sources whereas the model us-
ing the transition matrix successfully estimates the cross-fading curves, although there
is a little glitch in the intersection.

Fig. 1 illustrates the effect of re-weighing by the transition matrix. In the
example, two source signals are given as chirps that have frequencies changing
in opposite directions and thus they produce the same dictionary but different
transition matrices. The test signal is created by cross-fading the two chirps. The
basic model estimates approximately the same proportions of the two sources
because both dictionaries explain the mixture equally well at every time frame.
On the other hand, the re-weighting using the transition matrix successfully esti-
mates the cross-fading curves by filtering out weights inconsistent with temporal
dependencies of each source.

3 Experimental Results

We evaluated the proposed method on five classes of sound sources—speech, mu-
sic, applause, gun shot and car. We collected ten clips of sound files for each
class. Speech and music files were extracted from movies, each about 25 seconds
long. Other sound files were obtained from a sound effects library.® They have
different lengths from less than one to five seconds. We resampled all sound
files to 8kHz, and used a 64ms Hann window with 32ms overlap to compute the
spectrograms.

In the training phase, we obtained a dictionary of elements and a transi-
tion matrix for each sound source. Since we are not separating the sources and

6 www.sound-ideas.com
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Fig. 2: Estimated relative proportions for mixtures of two sources. For the purpose of
visualization, instead of the relative proportions, we shows the amplitude envelopes
obtained by multiplying the relative proportions to the sum of the magnitudes in that
time frame (3°; X(f,t)) (an approximation to the mixture envelope). The top plots
are the ground truth computed from individual sources. The middle and bottom plots
show the results using the basic model and the improved model with the transition
matrix.

therefore do not need a high-quality reconstruction, we chose a small number
of dictionary elements (less than 15) for each sound class. One of difficulties
that we encountered was choosing different combinations of dictionary sizes for
single sound sources because if we consider all possible combinations of dic-
tionary sizes, the number of possibilities exponentially grows.” Therefore, we
constrain the number of possible combinations using some heuristics. For exam-
ple, dictionary sizes of speech and music should be greater than those of other
environmental sounds because speech and music generally have more variations
in the training data. Under this idea, we chose ten sets of dictionary sizes. The
maximum numbers of dictionary sizes were 12, 15, 5, 5, 8 for speech, music,
applause, gunshot and car sounds, respectively, and the minimum numbers were
1 for all classes.

Fig. 2 shows an example in which the test sound is given as a mixture of
two sources. For the mixture of speech and music sounds, both models recognize
the two sources fairly well. However, in the basic model, separation between

7 For example, if we consider three different dictionary sizes for each source, this
number of possible combinations will be 3°
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Test sources speech music applause gun shot car
basic model 0.37 0.45 0.20 0.76 0.41
with transition matrix 0.26 0.32 0.03 0.42 0.39

Table 1: Estimation errors for single test sources

speech and music is somewhat diluted and loud utterances of speech are partly
explained by other sources, which are absent from the test sound. On the other
hand, the model with the transition matrix shows better separation between
speech and music and suppresses other sources more effectively. For the mixture
of speech and gunshot sounds, the two models show more apparent difference in
performance. The basic model completely fails to estimate the relative propor-
tions as the gunshot sound is represented by many other sources, whereas the
model with the transition matrix restores the original envelopes fairly well.

We performed a more formal evaluation using ten-fold cross-validation; we
split the dataset into nine training files and one test file for each source at each
validation stage. We estimated the relative proportions for single sources and
mixtures of two and three sources from the test files. For the mixture sounds, we
also adjusted the relative gains of the sources and separately performed the esti-
mation.® To quantify the accuracy of the estimation, we computed the following
metric:

1
Estimation error = N ; ; [re(s) — ge(s)], (5)

where 74(s) is the estimated proportion from Eq. 3 and 4, g.(s) is the ground
truth proportion and N is the number of time frames in the test file. We obtained
the ground truth proportion from the ratio of envelopes between singles sources
and the mixture at each time frame. The envelope was computed by summing
the magnitudes in that time frame (3, X(f,t)). We measured this metric only
for active sources, that is, those in the test sound. Note that the ground truth
proportion is 1 for single test sounds since no other sound is present in that
case. Throughout the the cross-validation, we repeatedly performed testing with
different sets of dictionary sizes and four re-weighting strengths (C' = 0.3, 0.5,
0.7 and 1.0). Then, we computed the average of the estimation errors from the
cross validations to find the best parameter sets.

Table 1 shows the results for the single test source. In the basic model,
the significant proportion of the test sound is explained by dictionaries of other
sources, particularly for gun shot sounds. However, the model with the transition
matrix show significant improvement for most sounds. Table 2 and 3 shows the
results for the mixtures of two and three sources. Although the improvements
are slightly less than those in the single source case, the model with transition

8 For the mixtures of two sources, the relative gains of the two sources were adjusted
to be -12dB, -6dB, 0dB, 6dB and 12dB. For the mixtures of three sources, they were
adjusted to be -6dB, 0dB, 6dB for each pair.
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Test sources speech/music | speech/gun shot | speech/applause | music/car
basic model 0.17 / 0.27 0.19 / 0.48 0.13 / 0.16 0.26 / 0.25
with transition matrix| 0.15 / 0.21 0.15 / 0.34 0.13 / 0.12 0.21 / 0.26

Table 2: Estimation errors for mixtures of two sources

Test sources speech/music/gun shot speech/music/car
basic model 0.17 / 0.21 / 0.25 0.16 / 0.20 / 0.20
with transition matrix 0.15 / 0.18 / 0.25 0.15 / 0.17 / 0.21

Table 3: Estimation errors for mixtures of three sources

matrix generally outperform the basic model. Note that as we have more sources
in the test sound, the estimation errors for individual sources become smaller
because the relative proportions of single sources are also smaller.

4 Conclusions

In this paper we presented a method of estimating the relative proportions of
single sources in sound mixtures. We first proposed a method of performing this
estimation using standard PLCA. We then proposed a method to improve this
estimation by accounting for temporal dependencies among dictionary elements.
Our experiments on five classes of sound sources showed promising results, par-
ticularly with the model that considers temporal dependencies. Future work
includes testing on a larger database and exploring more evaluation metrics.
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