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ABSTRACT

This paper proposes a single-channel speech dereverberation method
enhancing the spectrum of the reverberant speech signal. The pro-
posed method uses a non-negative approximation of the convolutive
transfer function (N-CTF) to simultaneously estimate the magnitude
spectrograms of the speech signal and the room impulse response
(RIR). To utilize the speech spectral structure, we propose to model
the speech spectrum using non-negative matrix factorization, which
is directly used in the N-CTF model resulting in a new cost func-
tion. We derive new estimators for the parameters by minimizing
the obtained cost function. Additionally, to investigate the effect of
the speech temporal dynamics for dereverberation, we use a frame
stacking method and derive optimal estimators. Experiments are per-
formed for two measured RIRs and the performance of the proposed
method is compared to the performance of a state-of-the-art derever-
beration method enhancing the speech spectrum. Experimental re-
sults show that the proposed method improved instrumental speech
quality measures, where using speech temporal dynamics was found
to be beneficial in severe reverberation conditions.

Index Terms— Non-negative convolutive transfer function,
non-negative matrix factorization, dictionary-based processing

1. INTRODUCTION

The quality and intelligibility of speech signals recorded using a
distant microphone in an enclosed space may highly degrade due
to reverberation, i.e., the reflections from the surrounding objects.
Therefore, in many applications, such as hearing aids and automatic
speech recognition, it is important to recover the non-reverberant
clean speech signal [1].

Several single-channel dereverberation approaches have been
proposed in the literature aiming to blindly estimate the speech sig-
nal from a reverberant recording. Most single-channel approaches
are based on either inverse filtering [2–4] or speech spectral en-
hancement [5, 6].

In this paper, we propose a single-channel dereverberation
method operating in the magnitude spectrogram domain. We assume
that the magnitudes of the short-time Fourier transform (STFT) co-
efficients of the reverberant signal in each frequency bin are obtained
by convolving the STFT magnitudes of the clean speech signal and
RIR in that frequency bin. Such non-negative convolutive transfer
function (N-CTF) model, which only holds approximately, can be
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advantageous as it does not model the RIR phase variations which
are difficult to be robustly modeled [7]. Methods based on simi-
lar approximations have been recently proposed [7–11], where the
speech spectrogram is additionally assumed to be sparse. These
methods utilize the N-CTF model to form an optimization problem
to blindly estimate the speech spectrogram. Therefore, these estima-
tion methods are purely based on the acoustic N-CTF model, while
ignoring the spectral structure of the speech signal.

The main contribution of this paper is to propose a blind single-
channel speech dereverberation method by jointly modeling the
room acoustic using the N-CTF model and the speech spectrogram
using non-negative matrix factorization (NMF). We propose a new
model by combining the N-CTF and NMF models and construct a
cost function. We derive new estimators for the model parameters
by minimizing the obtained cost function. Additionally, we present
a method based on the frame stacking concept [12] to utilized the
speech temporal dynamics. Experimental results show that by addi-
tionally using the NMF-based spectral model the Perceptual Eval-
uation of Speech Quality (PESQ) [13] scores improve substantially
and become superior to that of a state-of-the-art dereverberation
method based on spectral enhancement [6]. An additional improve-
ment is obtained by learning the NMF model offline from clean
speech training data, while using the speech temporal dynamics was
found to be beneficial in relatively severe reverberation conditions
and when a low-rank NMF model was used.

2. NON-NEGATIVE CONVOLUTIVE TRANSFER
FUNCTION (N-CTF)

Let s(n) and h(n) denote the discrete-time clean speech signal and
M -tap RIR, where n denotes the sample index. The reverberant
speech signal y(n) is obtained by convolving s(n) and h(n) as:

y (n) =

M−1∑
m=0

h (m) s (n−m) . (1)

In the STFT domain, (1) can be approximated as [14]:

yc (k, t) ≈
Lh−1∑
τ=0

hc (k, τ) sc (k, t− τ) , (2)

where yc(k, τ), sc(k, τ), and hc(k, τ) denote the complex-valued
STFT coefficients of reverberant speech signal, clean speech sig-
nal, and RIR, respectively, k and t denote the frequency and frame
indices, respectively, and Lh is the RIR length in the STFT do-
main [15]. Based on (2), it has been proposed in [7] to approximate



the spectral power |yc(k, t)|2 as

|yc (k, t)|2 ≈
Lh−1∑
τ=0

|hc (k, τ)|2 |sc (k, t− τ)|2 , (3)

where |·| denotes the absolute value operator. This approximation
can be justified in the sense of mathematical expectation assum-
ing that the RIR phase component is an independent uniformly-
distributed random variable [7]. In this paper, we will use the STFT
magnitude coefficients instead of the magnitude-squared coefficients
since experimental results showed that this resulted in better-quality
dereverberated speech signals. A similar observation has been also
made in [9]. Thus, we have

y (k, t) ≈
Lh−1∑
τ=0

h (k, τ) s (k, t− τ) , (4)

where y(k, t) = |yc(k, t)| , and s(k, t) and h(k, t) are defined sim-
ilarly. We refer to (4) as the non-negative convolutive transfer func-
tion (N-CTF) model.

3. PROPOSED METHOD

Based on the N-CTF model (4), we can estimate the magnitude spec-
trogram of the clean speech signal s(k, t) by minimizing the distance
between the left and right hand sides of (4). We use the Kullback-
Leibler (KL) divergence between y and ỹ as a possible distance mea-
sure, which is defined as:

KL (y |ỹ ) = y log
y

ỹ
+ ỹ − y. (5)

Accordingly, to estimate s and h, the following cost function should
be minimized:

Q =
∑
k,t

KL

(
y (k, t)

∣∣∣∣∣∑
τ

h (k, τ) s (k, t− τ)

)
. (6)

Because of the sparse nature of the speech spectrograms, it is
also beneficial to add a regularization term to (6) to obtain a sparse
estimate for s. We use the l1-norm of the speech spectrogram as a
measure of sparseness. The l1-norm of the speech spectrogram has
been also used in [7, 8] to obtain a regularized Euclidean distance.
Therefore, the following regularized cost function should be mini-
mized in order to estimate s and h:

Q =
∑
k,t

KL

(
y (k, t)

∣∣∣∣∣∑
τ

h (k, τ) s (k, t− τ)

)
+λ

∑
k,t

s (k, t) ,

(7)
where λ is a weighting parameter to encourage sparse estimates for
s. Note that the cost function Q does not include any criterion re-
lated to the structure of the speech spectra (except its sparsity), e.g.,
individual frequency bins are treated independently. In order to in-
corporate some knowledge about the structure of the speech spectra,
e.g., its low-rank nature and dependency across frequencies, we pro-
pose to use a speech spectral model, resulting in a new cost func-
tion. Motivated by the successful modeling of speech spectra using
non-negative matrix factorization (NMF) in different applications,
e.g., [16–19], we propose to use an NMF-based spectral model:

s (k, t) ≈
R∑

r=1

w (k, r)x (r, t) , (8)

where R is the number of columns in the dictionary W = [w(k, r)].
In matrix notations, (8) can be written as S ≈ WX, where S =
[s(k, t)] and X = [x(r, t)] denote the speech magnitude spectro-
gram, and the activation matrix, respectively. If R is chosen to be
smaller than the dimensions of S, (8) imposes a low-rank structure
on the speech spectrogram.

To jointly model the room acoustics and the speech spectra, we
propose to directly replace s (k, t) in (4) with its NMF approxima-
tion in (8), leading to:

Q =
∑
k,t

KL

(
y (k, t)

∣∣∣∣∣∑
τ

h (k, τ)
∑
r

w (k, r)x (r, t− τ)

)
+ λ

∑
r,t

x (r, t) . (9)

Since s does not directly appear in (9), as can be seen, the sparsity
regularization is now imposed on the activations x. This will im-
plicitly help to obtain sparse estimates for s, considering the relation
between s and x in (8). The model in (9) includes the N-CTF model
(4) as a special case when the dictionary W is a K×K-dimensional
identity matrix, where K denotes the number of frequency bins. A
similar idea has been used in [10], which is also a special case of (9)
when W is a fixed matrix.

To minimize (9), we use an auxiliary function method, similar
to [20], which leads to iterative multiplicative update rules for h, w,
and x. Hence, h, w, and x are updated iteratively and when updating
one of the variables the other two variables are held fixed using their
estimates from the previous iteration.

Let us first consider the optimization with respect to (w.r.t.) h,
and let Q(h) denote all terms depending on h in (9). Also, let esti-
mates of h, w, and x at the i-th iteration be denoted by hi, wi, and
xi, respectively. The following lemma can be stated [20].

Lemma 1. Let G(h, hi) be an auxiliary function for Q(h) such that
G(h, h) = Q(h) and G(h, hi) ≥ Q(h) for a given hi and all h. Let
hi+1 be the new estimate obtained by minimizing G(h, hi) w.r.t. h.
Q(h) is non-increasing under this update, i.e., Q(hi+1) ≤ Q(hi),
where equality holds only when hi is a local minimum of Q(h).

Theorem 1. The function Q(h) is non-increasing under the follow-
ing update rule:

hi+1 (k, τ) = hi (k, τ)

∑
t y (k, t) s̃ (k, t− τ) /ỹ (k, t)∑

t s̃ (k, t− τ)
, (10)

where s̃(k, t) =
∑

r w
i(k, r)xi(r, t), and ỹ(k, t) =

∑
τ h

i(k, τ)×
s̃(k, t− τ).

Proof. Since − log
∑

τ h(k, τ)s̃(k, t− τ) is convex, using Jensen’s
inequality [21] with h(k, τ) as the variable we have:

− log
∑
τ

h (k, τ) s̃ (k, t− τ) ≤

−
∑
τ

hi (k, τ) s̃ (k, t− τ)

ỹ (k, t)
log

ỹ (k, t)h (k, τ) s̃ (k, t− τ)

hi (k, τ) s̃ (k, t− τ)
.

(11)

Using the above inequality in the definition of Q(h) (which is omit-
ted here due to space limit), we obtain the following auxiliary func-



tion for Q(h):

Q(h) ≤ G(h, hi) = −
∑
k,t,τ

(
y (k, t)

hi (k, τ) s̃ (k, t− τ)

ỹ (k, t)
×

log h (k, τ)

)
+
∑
k,t,τ

(h (k, τ) s̃ (k, t− τ)− C (k, t, τ)) , (12)

where C(k, t, τ) = y (k, t) hi(k,τ)s̃(k,t−τ)
ỹ(k,t)

log ỹ(k,t)

hi(k,τ)
is a constant.

Differentiating G(h, hi) w.r.t. h(k, τ) and setting it to zero yields
(10). Recalling Lemma 1, the proof is complete.

Update rules for w and x can be derived similarly:

wi+1(k, r) = wi(k, r)

∑
t,τ y (k, t)hi+1 (k, τ)xi (r, t− τ) /ỹ (k, t)∑

t,τ hi+1 (k, τ)xi (r, t− τ)
,

(13)

xi+1(r, t)=xi (r, t)

∑
k,τy (k,t+ τ)hi+1(k,τ)wi+1(k,r)/ỹ(k, t+ τ)∑

k,τ hi+1 (k, τ)wi+1 (k, r) + λ
,

(14)

where ỹ(k, t), defined after (10), is computed using the latest es-
timates of the parameters. These update rules can be efficiently
implemented using the fast Fourier transform (FFT) [7]. To re-
move the scale ambiguity1, after each iteration, each column of W
is normalized to sum to one, and the columns of H are element-
wise divided by its first column, and h(k, τ) is clamped to satisfy
h(k, τ) < h(k, τ − 1) for all τ .

Let Ŵ = [ŵ(k, r)], X̂ = [x̂(k, r)], and Ĥ = [ĥ(k, r)] denote
the obtained estimates after convergence of the iterative algorithm.
One possible estimate for the speech magnitude spectrogram S is
given by Ŝ = ŴX̂. Alternatively, we suggest to estimate the speech
spectrogram using a time-varying gain function as

ŝ(k, t) = G(k, t)y(k, t), (15)

where the gain function G(k, t) is given by

G (k, t) =

∑
r ŵ (k, r) x̂ (r, t)∑

r,τ ĥ (k, τ) ŵ (k, r) x̂ (r, t− τ)
. (16)

This was found to be particularly advantageous when the dictionary
W was learned offline from speech training data and was held fixed
for dereverberation.

Since temporal correlations are an important aspect of speech
signals, we describe an extension of the above algorithm where we
stack the consecutive frames to form super-vectors to model the
temporal correlations [12]. Let y(t) denote the t−th column of
Y = [y(k, t)], and let K denote the number of frequency bins or
dimension of y(t). We define the KTst-dimensional vector yst(t)
as yT

st(t) = [yT (t) . . .yT (t + Tst − 1)]. sst(t) is defined simi-
larly. Also, let hst(t) be the KTst-dimensional vector defined as
hT
st(t) = [hT (t) . . .hT (t)]. The new cost function is obtained by

replacing y and h in (9) by their stacked counterparts yst and hst,
where W is a KTst × R matrix. The update rules for w and x re-
main identical to (13) and (14). The update rule for h can be derived
similarly to Theorem 1 and is given by

hi+1 (k, τ) = hi (k, τ)

∑Tst
l=1

∑
t yst (f, t) s̃st (f, t− τ) /ỹst (f, t)∑Tst

l=1

∑
t s̃st (f, t− τ)

,

(17)

1Note that if Ĥ, Ŵ, and X̂ are a solution to (9), the same optimal value
for Q can be obtained using αĤ, Ŵ/α, and X̂ where α is a random non-
negative number.

where f = k + K(l − 1), s̃st(f, t) =
∑

r w
i (f, r)xi (r, t), and

ỹst (f, t) =
∑

τ h
i
st (f, τ) s̃st (f, t− τ), where KTst-dimensional

vector hi
st(t) is defined as hi,T

st (t) = [hi,T (t) . . .hi,T (t)]. After
convergence of the iterative algorithm, the speech magnitude spec-
trogram is estimated as ŝ(k, t) = G(k, t)y(k, t), where G(k, t) is
obtained by averaging over the overlapping segments:

G (k, t) =

∑Tst
l=1

∑
r ŵ (f, r) x̂ (r, t)∑Tst

l=1

∑
r,τ ĥst (f, τ) ŵ (f, r) x̂ (r, t− τ)

, (18)

where ·̂ is used to denote the obtained estimates after convergence.
After estimating the speech spectrogram, the time-domain clean
speech signal s(n) is estimated by applying inverse STFT on the
estimated spectrogram ŝ(k, t), where the reverberant phase spectra
and the overlap-add procedure are used.

4. EXPERIMENTAL RESULTS

We applied our proposed method to dereverberate speech signals ob-
tained by convolving clean speech signals with two measured RIRs
with reverberation times T60 ≈ 430 and T60 ≈ 680 ms, and direct-
to-reverberation ratio (DRR) around 5 dB and 0 dB, respectively.
The proposed methods were applied on 16 different speech sentences
(uttered by different speakers) from the TIMIT database [22] to make
the results independent of the speech material. The sampling fre-
quency was 16 kHz and the STFT frame length and overlap length
were set to 64 ms and 32 ms, respectively, where a square-root Hann
window was used for both STFT analysis and synthesis.

The dereverberation performance is measured using PESQ [13]
with clean speech signal as the reference. For the proposed method,
we investigate two possible ways to learn the dictionary W. First,
a dictionary W with R = 100 dictionary elements was learned on-
line from the reverberant signal (N-CTF+NMF). Alternatively, W
was learned offline from training data (consisting of 250 sentences
uttered by 27 speakers, disjoint from the test data set) and it was
held fixed. We report results for two cases: 1) a low-rank NMF with
R = 100 was learned (N-CTF+NMF-Dic100), 2) an overcomplete
speaker-independent dictionary with R = 4000 (N-CTF+NMF-
Dic4000) was constructed by sampling from the magnitude spec-
trogram of the speech training data using a uniform random walk
method [23]. Moreover, the performance of the N-CTF based dere-
verberation method (with W being fixed to an identity matrix) is
evaluated in the experiments. Additionally, the proposed method is
compared to a speech spectral enhancement (SE) method where the
late reverberant spectral variance was estimated using [6] (with T60

and DRR computed from the RIR), and speech log-spectral ampli-
tude estimator was used to enhance the reverberant speech [24].

The sparsity parameter λ was set to 0.1
KT

∑
k,t y(k, t) where T

is the total number of frames. Additionally, to encourage sparser
solutions, the estimates of x and s, after each iteration, were raised to
a power ϕx as proposed in [25], where we experimentally set ϕx =
1.02 when R = 100, and ϕx = 1.05 when R = 4000. The iterative
update rules were executed for 50 iterations for all methods, and the
RIR length Lh was set to 10, independent of T60. Each row of H
was initialized identically using a linearly-decaying envelope, while
W and X were initialized by iterating the standard NMF update
rules [20] (with random initializations) on the spectrogram of the
reverberant signal for 10 times.

Fig. 1 shows an example of the spectrograms of the reverberant,
dereverberated, and clean speech signals. As can be observed, the
reverberation effects have been reduced when an NMF-based spec-
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Fig. 1: Spectrograms of reverberant, dereverberated (using the N-
CTF+NMF-Dic4000, second panel, and N-CTF, third panel, meth-
ods), and clean speech signals for a RIR with T60 = 680 ms.

tral model is additionally used in the N-CTF based dereverberation.

To quantitatively study the dereverberation performance, the
PESQ improvements, averaged over all speech sentences, for the
two RIRs are shown in Fig. 2. As can be seen, the dereverberation
method using only the N-CTF model and the speech enhancement
(SE) method lead to a comparable PESQ improvements. By intro-
ducing a low-rank structure on the speech signal (N-CTF+NMF), the
performance has substantially improved for both RIRs. The results
show that the performance of the N-CTF+NMF-Dic100 method
with R = 100 offline-learned dictionary elements is worse than the
online counterpart N-CTF+NMF. However, by using a richer dictio-
nary (N-CTF+NMF-Dic4000) the performance is further improved,
where the proposed N-CTF+NMF-Dic4000 method outperforms the
SE method by more than 0.2 MOS points.

Next, we present the dereverberation results using the proposed
method where the frame stacking method with 6 stacked frames, i.e.,
Tst = 6, is used to utilize the speech temporal dynamics. The ob-
tained PESQ improvements are shown in Fig. 3, where the extension
“(S)” is used to identify the methods with stacked vectors. Results
show that in the mild reverberation conditions, top panel of Fig. 3,
using the temporal dynamics degrades (or does not improve) the per-
formance of the dereverberation methods. For relatively severe re-
verberation conditions, however, bottom panel of Fig. 3, using the
temporal dynamics improves the performance of the N-CTF+NMF-
Dic100 method while it does not improve the performance of the
N-CTF+NMF and the N-CTF+NMF-Dic4000 methods.

The results show that the best performance is obtained using the
N-CTF+NMF-Dic4000 method, where the N-CTF+NMF method
also leads to a good performance. While the N-CTF+NMF-Dic4000
method requires a large 512×4000-dimensional matrix to be stored
in the memory, the N-CTF+NMF method is computationally slightly
more complex because it additionally updates the dictionary W.
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Fig. 2: PESQ improvements obtained using the proposed method
with different parameters.
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Fig. 3: PESQ improvements obtained using the proposed method
with and without use of speech temporal dynamics, where the exten-
sion “(S)” is used to identify the methods with temporal dynamics.

Hence, depending on the available resources, one of the methods
may be preferred.

5. CONCLUSION

In this paper, we developed a speech dereverberation method us-
ing the N-CTF model, where we proposed a method to additionally
model the speech spectrum using NMF. The NMF model was di-
rectly used inside the N-CTF model resulting in a new cost function.
The obtained cost function was then minimized to estimate the RIR
magnitude spectrogram, NMF dictionary and NMF activation ma-
trix. The speech magnitude spectrogram was then estimated using a
time-varying gain function. To utilize the speech temporal dynamics
for dereverberation, a frame stacking method was additionally used
and corresponding optimal estimators were derived. Experimental
results using two measured RIRs with T60 ≈ 680 ms and T60 ≈
430 ms show that the dereverberation performance improves sub-
stantially when the NMF-based spectral method is utilized. More-
over, an additional improvement was observed when an overcom-
plete speaker-independent NMF dictionary was learned offline from
speech training data, outperforming a state-of-the-art speech spectral
enhancement method for dereverberation by 0.2 MOS points. The
results show that, using the speech temporal dynamics can improve
the dereverberation performance for severe reverberation conditions,
while it degrades (or does not improve) the performance for mild re-
verberation conditions.
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